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INTEGRATING BIOMECHANICS, ENERGETICS AND ECOLOGY IN LOCOMOTION

Towards the yin and yang of fish locomotion: linking energetics,
ecology and mechanics through field and lab approaches

James C. Liao*

ABSTRACT

Most of our understanding of fish locomotion has focused on
elementary behaviors such as steady swimming and escape
responses in simple environments. As the field matures, increasing
attention is being paid to transient and unsteady behaviors that
characterize more complex interactions with the environment. This
Commentary advocates for an ecologically relevant approach to lab
studies. Specific examples have brought new understanding to the
energetic consequences of fish swimming, such as (1) station holding
around bluff bodies, which departs drastically from steady swimming
in almost all aspects of kinematics, muscle activity and energetics,
and (2) transient behaviors such as acceleration and feeding, which
are critical to survival but often neglected because of challenges in
measuring costs. Beyond the lab, a far richer diversity of behaviors is
available when fish are given enough space and time to move.
Mesocosm studies are poised to reveal new insights into fish
swimming that are inaccessible in laboratory settings. Next-
generation biologgers that incorporate neural recordings will usher
in a new era for understanding biomechanics in the wild and open the
door for a more mechanistic understanding of how changing
environments affect animal movement. These advances promise to
allow insights into animal locomotion in ways that will mutually
complement and accelerate laboratory and field studies in the years to
come.

KEY WORDS: Biologging, Biomechanics, Ecology, Energetics, Fish,
Locomotion

Introduction

Comparative biomechanists are interested in understanding the
grand diversity of organisms and how they work. Inspired by the
natural world, biomechanists have a rich history of looking at
anatomy and behavior through the lens of engineering and physics.
Burgeoning advances in technology have given us new eyes to look
at how animals move, from the moving image (Batty, 1984,
McHenry and Hedrick, 2023) to measuring forces (Drucker and
Lauder, 1999; Heglund, 1981; Stamhuis and Videler, 1995;
Warfvinge et al., 2021) and muscle physiology (Altringham et al.,
1993; Gibbs et al., 2024; Hughes and Ballintijn, 1968). These
approaches have been cultivated in the laboratory, where aspects of
animal locomotion are interrogated in controlled environments.
Importantly, many of the breakthroughs in our field would be
impossible without such a reductionist approach. And yet natural
behavior is the language of biomechanics. Animals evolved to move
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in the wild, in lockstep with often complex environments. Animals
carry that response in their bodies and nervous systems, even as they
are brought inside. For only natural behavior can reveal the breadth
of mechanisms and ranges of performance that animals have
evolved to execute over millions of years (Irschick, 2003).

The Taoist principle of yin and yang may help to visualize a new
era for comparative biomechanics, one in which we strive to
integrate field and laboratory perspectives. The black swirl of yin
represents the laboratory and its powerful technologies, which
encloses a white dot that represents the fishes that we bring into the
lab for experimentation (Fig. 1). The white swirl of yang represents
nature, enclosing a black dot which can be a ‘lab on a chip’ such as a
biologger, which is mounted on the fish to reveal its behavior in the
wild. Much of our progress lies historically in the yin approach,
where fish are interrogated in the lab. At times, this includes a
salient aspect of the environment, such as naturalistic visual stimuli
or physical terrain. Advances in biologging (Wilmers et al., 2015),
natural neuroscience (Cisek and Green, 2024) and movement
ecology (Nathan et al., 2008) are poised to pull traditional
biomechanics towards a yang approach. Fittingly, the border of
the white yang swirl disappears in the larger context of nature, which
extends beyond the lab in time, space and complexity. Indeed, all
our labs are embedded in nature and our experiments exist because
our animals do, reminding us of the important ramifications of
conservation in this day and age.

This Commentary will cover three promising approaches for the
future of fish biomechanics research: (1) comparing unsteady
movements across diversity; (2) bringing hydrodynamic complexity
into the lab; and (3) studying animals in larger spaces with new
technologies to expand insight into natural behaviors. Written from
the perspective of a lab-based biomechanist with field aspirations,
these directions will be critical to advance our understanding of the
energetics and ecology of fish locomotion in the years to come.

Momentary movements: diversity, hydrodynamics and
energetics
Accelerating fish
We know remarkably little about how swimming fish change their
swimming velocity in the laboratory, and even less about how often
they accelerate and decelerate in nature. Ecologically, it is important
to understand how fish change speed, because this fundamental
ability is tied to their survival, such as maneuvering, intercepting
prey, escaping from predators and switching to more energetically
favorable gaits (Domenici and Blake, 1997; Puy et al., 2024; Webb,
1983; Wu et al., 2007). Often, speed changes are initiated ‘on the
fin’ while fish are already swimming (Drucker and Lauder, 1999;
Hale et al., 2006; Peake and Farrell, 2004), as opposed to a C-start
escape or ambush attack from a standstill.

What ecological insights can we glean from lab experiments on
acceleration? First, note that when fishes swim steadily, they keep
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Fig. 1. A yin and yang perspective of laboratory and field studies. The
Taoist symbol represents two complementary approaches to understanding
the ecology and energetics of fish biomechanics. By bringing fish and salient
aspects of their natural environment (white dot) into the lab (black swirl), an
experimental understanding of the mechanisms of behavior can be achieved.
By bringing technology (white tag on black fish) into the field (white swirl) in
the form of biologgers, new insights into the ecology and energetics of fish
physiology and behavior can be revealed. Because all labs are embedded in
nature, an awareness of the mechanisms of behavior can contribute to
conservation issues.

their tailbeat amplitude and frequency low and constant, a strategy
that maximizes efficiency while minimizing energetic investment.
A survey of over 40 species shows that when they accelerate, fish
increase both tailbeat amplitude and frequency, using a different
movement strategy that increases propulsion despite incurring
higher drag costs (Akanyeti et al., 2017). Does acceleratory
propulsion affect the distribution of fishes in their native habitats,
or partition their food resources depending on their performance?
We are still not able to directly make these connections, but some
fundamental observations, currently only possible with flow
visualization techniques in the lab, bring us closer to these and
other ecological insights.

When species with different body shapes, swimming styles and
ecological niches accelerate, they reveal a convergence of
hydrodynamics in their wake by leaving similar footprints
(Akanyeti et al., 2017). This holds true for elongate fishes such as
moray eels (Gymnothorax vicinus), laterally compressed fishes such
as spadefish (Chaetodipterus faber) and fusiform fishes such as red
drum (Sciaenops ocellatus). Evolution in different habitats does not
seem to make a difference either, as surface fishes such as needlefish
(Strongylura marina), demersal fishes such as oyster toadfish
(Opsanus tau) and riverine fishes such as rainbow trout
(Oncorhynchus mykiss) all revert to the same fluid principle when
accelerating. When these fishes transition from steady swimming to
acceleration, they do so by generating different vortex rings
(momentary, doughnut-shaped structures in the flow behind the
tail), as revealed by flow visualization techniques such as digital
particle image velocimetry (DPIV). When fish diversity is married
to flow visualization in the lab, we gain insight into how different
fishes influence the water as they swim in real time (Drucker and
Lauder, 1999; Nauen and Lauder, 2002; Wilga and Lauder, 2002).
A comparative, experimental approach has revealed a unifying
hydrodynamic principle for accelerating animals in fluids.
Specifically, the diversity of fish swimming wakes collapses
during acceleration, made possible by the production of more
forceful, symmetrical vortex rings (Fig. 2A-D). For example, in
rainbow trout, the ratio of ring height to width (/D) approaches 1.0

(e.g. the value shifts from 0.66 to 0.88) when transitioning from
steady swimming to acceleration (Akanyeti et al., 2017). The force
imbued by a vortex ring also depends on the ratio of core diameter to
ring diameter, D,/D. When it approaches 0.42, it reaches maximum
efficiency based on nozzle-generated ring experiments (Gharib
et al., 1998; Weigand and Gharib, 1997). Rainbow trout shift their
Dy/D from 0.25 to 0.37 when transitioning from steady swimming
to acceleration. Other species across different phylogenetic
memberships, body shapes, swimming modes and ecological
niches (e.g. clown knifefish, crevalle jack, Florida gar and Indo-
Pacific tarpon) demonstrate a similar trend. This unifying principle
implies that the fluid medium can reveal strong constraints on
behavioral performance that act broadly across phylogenetic
membership. These quantitative comparisons are currently only
possible in the lab. Field applications of flow visualization are
growing in capacity and ease, promising to provide a much-needed
addition of hydrodynamic field studies in the future (Creutin et al.,
2003; Katija and Dabiri, 2008).

Using robots to reveal energetics

The energetic consequences of swimming behaviors such as
chasing prey or fleeing danger are important to understand, as
predator—prey processes are thought to drive ecological dynamics
(Harper and Blake, 1988; Townsend and Winfield, 1985). Yet, the
cost of swimming acceleration is difficult to directly measure given
its transient and unpredictable nature. One alternative is to use soft
robots (Fig. 2E) to link swimming kinematics with performance and
costs. By independently controlling heave and head yaw, one can
replicate similar motions to those observed in live fish (Fig. 2F). The
parameter space can be explored to discover which swimming
movements cause the model, equipped with a force transducer, to
hold station (‘self-propelled speed’ where thrust equals drag;
Fig. 2F-I), accelerate (‘thrust’) or drift downstream (‘drag’). At self-
propelled speeds, certain heave and yaw combinations result in the
highest power efficiency and therefore lowest cost of transport
(Fig. 2F,G). During acceleration, different heave and yaw
combinations generate high propulsive efficiency (i.e. net force
multiplied by speed divided by power). For the remaining motion
combinations, the drag incurred by swimming is greater than the
thrust produced (Fig. 2F). Mapping propulsive efficiency onto head
yaw values in live fish reveals that increased head yaw can increase
efficiency by 100% (Fig. 2J), though this comes at a 50% increase in
mechanical power investment (Akanyeti et al., 2017) (Fig. 2K).
Controlling fish-like motions and evaluating energetic investment
with robotic platforms remains a viable approach to understanding
the costs of momentary behaviors until measurements on live fish
are made.

The cost of foraging: swimming and feeding

One such measurement has been made: for foraging trout
accelerating to attack drifting prey. Measuring the physiological
cost of attacking prey is challenging, but laboratory respirometry
can be applied to directly measure the cost of feeding behaviors.
Small trout holding station behind a cylinder in a large flow tank
respirometer will repeatedly feed on artificial prey, actively
swimming out from the cylinder wake before opening their
mouths to intercept a particle, and then returning to the cylinder
(Fig. 2L). While swimming behind a cylinder is less costly than
swimming in uniform flow, during feeding the opposite is the case
(Fig. 2M,N; Johansen et al., 2020). This is likely due to the stability
and control costs of transitioning into and out of the vortex street to
intercept the unpredictable trajectory of food. In addition, prey
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Fig. 2. See next page for legend.

capture success is lower for Karman gaiting trout; thus, it is also  pools (Regal, 1992). Results from the lab can be used to generate
more energetically favorable to feed in uniform flows (Fig. 20). In  ecological hypotheses that can be tested in the field, another
rivers, trout hold station behind rocks and large woody debris promising way that can begin to bridge the inside and outside
(Gibson, 1978; Keenleyside, 1962), and feed on insect hatches in ~ worlds of research.

>
(@)
9
Q
(2]
©
-+
C
Q
S
=
()
o
x
L
Y
(©)
©
c
e
-]
(®)
_




REVIEW

Journal of Experimental Biology (2025) 228, jeb248011. doi:10.1242/jeb.248011

Fig. 2. Different laboratory approaches to understanding ecologically
relevant behaviors such as acceleration and feeding. To eat or avoid being
eaten, to keep up with the school or to maneuver through complex habitats,
fish need to modulate their swimming speed. Digital particle image velocimetry
across a diversity of species shows that the vortex ring shed behind steadily
swimming fishes (A) differs from that shed by accelerating fishes (B) (Akanyeti
et al., 2017). Steady swimming rings (C) are more elliptical and directed more
laterally than rings generated by acceleration (D), which have higher vorticity,
lower ring angle and smaller diameter. Acceleration rings contain an average
force that is 4 times greater than steady swimming, with thicker vortex cores
that approach maximum efficiency values of 0.42. d/D, ratio of ring height to
width; D/D, ratio of core diameter to ring diameter; s, swimming; a,
acceleration. (E) A robotic model approach to energetics can proceed by first
understanding the correlation between the degree of head yaw and tailbeat
amplitude in live fish (F) swimming steadily (blue) and accelerating (pink). (G)
Driven at these head yaw values, a performance space can be rendered by a
soft robot molded from a 3D scan of a real trout. When the phase difference
between heave and yaw is plotted against the oscillation frequency, steady
swimming (‘self-propelled speed’, where thrust=drag) is revealed as a light
blue C-shaped region delineated by dashed lines. (H) Within this region, the
cost of transport is minimal at certain combinations of heave—yaw phase
differences (~90 deg) and oscillation frequency (~1.5 Hz), where the white dot
represents the minimum cost of transport and the dashed circle encloses a
region of 90% similarity. The model accelerates (thrust>drag) when propulsive
force is highest (red region in G). Within this region, propulsive efficiency (net
force multiplied by speed divided by power) is maximal at certain combinations
of phase differences (~180 deg) and oscillation frequency (~2.5 Hz). This is
seen in the red region in I, where the white dot represents the maximum
efficiency and the dashed circle encloses a region of 90% similarity.
Leveraging robotics allows us to understand swimming movements in terms of
mechanical performance. (J) Next, linking back to live fish kinematics, plotting
robot head yaw against yaw values from real fish shows that a yaw increase
from 10 to 20 deg provides a 100% increase in propulsive efficiency. However,
this increase in propulsive efficiency comes with a 50% increase in mechanical
power input (K). (L) Fish must accelerate to feed, but the energetic costs of
feeding are challenging to measure. One approach involves presenting artificial
prey to trout holding station in a flow tank respirometer. (M) These types of
predator—prey experiments are possible in the laboratory, and reveal that while
swimming behind structures is more energetically favorable than swimming in
uniform flow (Johansen et al., 2020), feeding is both less energetically
favorable (N) and less successful (O). Panels A—K are from Akanyeti et al.
(2017) and panels M-O are from Johansen et al. (2020).

Bringing flow complexity into the lab

Using a cylinder to create unsteady flows

Fish vary their swimming velocity, but water also moves. Flows in
nature are often unsteady, where fluid velocity varies in space and
time. Wild fish are often attracted to these flows in rivers, lakes and
oceans (Jowett and Richardson, 1995; Marchetti and Moyle, 2001).
This is evident when fishes in rivers refuge behind rocks, boulders
and large woody debris, and when marine fishes hold station behind
coral branches and vegetation during tidal flows. Because freely
behaving fishes congregate where flow and bluff bodies intersect
(Pavlov et al., 2008), it is tempting to assume that they derive a
benefit, perhaps energetically for locomotion, ecologically with
increased feeding opportunities or both. Critical in understanding
the link between biomechanics, ecology and energetics is our ability
to re-construct unsteady flows in the lab to elucidate the
mechanisms that attract or repel fish to flow.

When fishes as diverse as rainbow trout (Oncorhynchus mykiss),
brook trout (Salvelinus fontinalis), alewives (4losa pseudoharengus),
bluegill sunfish (Lepomis macrochirus) and yellow perch (Perca
flavescens) are exposed to unsteady flows behind a stationary bluff
body such as a cylinder, they can exploit the energy of vortices in its
wake (Fig. 3A) (Liao et al., 2003a,b). Cylinders represent a good
experimental approach to approximating natural habitat such as
submerged vegetation (branches, roots, etc.), rocks and corals, in that

discrete, predictable vortices are shed. Experiments with cylinders
reveal that rainbow trout can surf when their body length is about
twice that of the diameter of the vortex-shedding structure. By doing
so, they can hold station (e.g. K&rmdn gaiting trout can resist drifting
downstream in the Earth frame of reference by exploiting vortices in a
von Karman street) by shutting down red axial muscle activity along
the entire posterior half of the body (Liao, 2004) (Fig. 3B). When this
occurs, only the anterior-most red muscles are active, despite the body
undulating with a larger amplitude than seen during swimming against
uniform flow (e.g. freestream swimming). When exposed to certain
vortical flows, trout can swim by relying on passive interactions of
vortices bending the body instead of active muscle contractions.
Unsteady flows in the lab reveal a need to understand both passive and
active components of very complex, and often unintuitive, fin and
body movements. For example, the intrinsic musculoskeletal
compliance of a dead trout, devoid of actuation from the nervous
system, is sufficient to create upstream swimming (Beal et al., 2006;
Liao, 2004). Moreover, fishes swimming in unsteady flows that use
swimming modes other than body undulation (e.g. gymnotiform
locomotion) may face unique challenges and costs that are only
starting to be understood (Ortega-Jiménez and Sanford, 2021). These
laboratory results have important implications for the energetics and
ecology of fish swimming, such as suggesting that fish save energy
and relate to habitat structures according to their body size and
swimming mode. Future experiments that (1) look at simultaneous,
real-time muscle activity, kinematics and flow field around the body,
(2) expand the diversity of experimental species, and (3) look at fluid
structure interactions beyond cylinders such as substrate roughness
and compliant vegetation (Cameron et al., 2013; Carlson and Lauder,
2011) promise to shed deeper insight into the ecology and energetics
of fish locomotion. In the field, these principles of fish and unsteady
flow interactions could be applied to enhance the ecological context of
stream restoration or augment fish passageway designs to decrease the
energetic costs of fish migration.

Many flows, many costs

Behavioral diversity emerges when given enough space. When given
free rein in large tanks, rainbow trout show new ways of relating to
habitat and flow that can have important energetic implications. For
example, trout display at least four behaviors around a single cylinder
in flow (Taguchi and Liao, 2011) (Fig. 3C). They can Karman gait
behind, entrain to the side, swim in the front bow wake region or swim
away in a region of uniform flow (freestream swimming). Karman
gaiting and entraining trout consume 50% less oxygen as compared
with freestream swimming. Flow velocity shifts the energetic
consequences of these behaviors profoundly. At lower flow speeds,
swimming in uniform flows is the least costly, while at higher speeds,
swimming in the bow wake is the least costly. In this way, the
energetics of swimming change with flow speed in ways that cannot be
predicted by simply studying fish swimming in uniform flows. This
gives us insight into habitats in nature, where tides and river runoff
create flows that are either not strong enough or too turbulent, which
can drive fish populations to alter their daily spatial distributions to
save energy.

When trout are exposed to more complex physical structures in flow,
they choose configurations that generate the strongest, most predictable
vortices (Stewart et al., 2016) (Fig. 3D,E) and avoid structures that
create vortices that are too weak to harness (Fig. 3E). Opportunities
exist to efficiently investigate the hydrodynamics around more intricate
habitats, approximating multiplexed structures such as vegetation or
corals, using computation methods (Fig. 3F). These structures can be
fabricated and then tested on live fish to investigate the effect of more
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Fig. 3. Fish swimming in the lab under ecologically relevant, unsteady flows reveal unique body kinematics, muscle activity, energetics and behaviors.
(A) Flow visualization of a trout slaloming around vortices shed behind a cylinder (e.g. Karman gaiting, KG). From Liao et al. (2003b). Reprinted with permission
from AAAS. (B) KG fish alter both their kinematics and axial red muscle activity patterns as compared with swimming in freestream flow (FS) conditions (modified
from Liao, 2004). (C) Even with a single cylinder, fish adopt several positions around the structure, saving energy to different degrees depending on the flow
velocity (modified from Taguchi and Liao, 2011). When the energetics of FS swimming is set at 100%, the relative costs of different behaviors can be seen

(BW, bow wake; EN, entrain), illustrating the complex relationship between how fish relate to structure and the flow velocity. This observation provides a foothold to
begin to understand more intricate fluid—structure—energetics interactions in nature, where similar behaviors likely shape ecological relationships at the population
level. (D) Computational fluid dynamics (CFD) model of more elaborate structures in flow. Tandem cylinders placed close together generate a strong vortex street
that trout prefer to KG behind (Stewart et al., 2016). / is the length between two cylinders in the downstream—upstream direction (cylinder spacing). This is
normalized/divided by the cylinder diameter D to give the final number. (E) Trout do not KG behind widely spaced cylinders at any flow velocity tested. Modified
from Stewart et al. (2016). (F) The wake behind multiplexed structures approaching coral branches or submerged tree branches can be efficiently explored with
CFD simulations, where L, is the downstream spacing and L, is the cross-stream spacing. Cylinder arrays can then be fabricated and used in live fish experiments
to improve our understanding of how fish relate to intricate structures in nature (Sparks et al., 2024).

intricate wakes on swimming kinematics (Sparks et al., 2024). Future
work adopting a comparative framework, in addition to investigating
how fish relate to natural structures that vary in composition or
compliance, will undoubtedly reveal new mechanisms of energy
savings.

Studying animals in bigger spaces

Mesocosm as mini-ocean

Much of our understanding of fish locomotion is based on steady
swimming or C-start escapes: behaviors that fish can perform soon
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after placing them in an experimental tank. But by simply giving fish
more space and time, more diverse behaviors are revealed. For
example, when wild bluefish (Pomatomus saltatrix) were left to
interact with native killifish (Fundulus heteroclitus) in a large outdoor
mesocosm (Fig. 4A), new insights were gained into the pursuit
algorithm of how fish attack their prey (McHenry et al., 2019).

With accelerometers synchronized to video recordings, locomotory
behaviors in a mesocosm can be annotated and quantified.
Computational advances in automated recognition make it possible
to uniquely identify and track individuals in three dimensions and
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Fig. 4. Observing natural behaviors is facilitated in large spaces where animals have more space and time. (A) Video observation of wild bluefish attack
strategies on natural prey requires enough space to allow for behavior decisions, which can be done in large outdoor mesocosm pools (McHenry et al., 2019).
(B) To extend our observation of fishes where enough time, space and visibility pose challenges (i.e. small lab tanks, field behaviors in low water clarity, deep
water or at night), multiple accelerometers can be placed on fish. Then, velocity-specific swimming movements can be calibrated in a flow tank before release of
the fish into a mesocosm. Modified from Stewart et al. (2016). (C) Accelerometers from two positions, the operculum and tail, are used to generate a probability
density function plot. By doing so, persistent surveillance of wild fishes can be accomplished for weeks, months or years. (D) Acoustic telemetry uses receivers to
track unique ID tags inserted into wild red drum and tracked with receivers (tag image credit: Innovasea). (E) Time, date, location and number of detections of an
individual red drum as it moved across a receiver array in St Augustine, FL, USA (E. Goturk, C. Morgan and J.C.L., unpublished). The timing (t—t3) and location
of detection can be cross-referenced with tide cycle on a given day (inset) to gain a better understanding of fish movements relative to tidal flow cycles. (F) A
customized, waterproof, streamlined head-stage amplifier can record neural activity in the brain for freely swimming fish (modified from Gibbs et al., 2023).

(G) The streamlined amplifier can be attached to fast-swimming fishes such as rainbow trout and allows them to swim against different velocities, perform
C-starts, or feed on drifting prey (modified from Gibbs et al., 2023). (H) Chip design allows for wireless data logging capabilities (modified from Gibbs et al., 2023).
() By applying voltage sweeps instead of recording neural spike activity, the head stage can act as a neurologger to identify neurotransmitters such as dopamine

or serotonin in the brain of freely moving fish.

reveal body kinematics in response to varying biotic and abiotic
parameters (Congdon et al., 2022; Mathis et al., 2018; Pérez-Escudero
et al., 2014). Many behaviors, however, occur at night, in the deep
ocean or murky water, and lie beyond what we can observe visually.
One promising approach to realize more behaviors is to attach
accelerometers onto fish placed in larger spaces. Behaviors can be first
calibrated with video in the laboratory before fish are released into a
mesocosm or the wild (Fig. 4B). Examples include steady swimming
at different flow velocities in a flow tank, as well as other variables
such as heart rate or oxygen consumption (Doherty et al., 2022).
Strategic placement of accelerometers can reveal a more nuanced
understanding of behavior (Broell et al., 2012; Kawabata et al., 2014).
By placing multiple accelerometers onto both the tail and the
operculum of a fish, swimming and respiratory activity can be
monitored independently (B. J. Gibbs, J. Strother and J.C.L.,
unpublished). This enables the differentiation of swimming (e.g.
higher tail beat and opercular pumping acceleration) from resting (e.g.

lower tail beat and opercular pumping acceleration). Unique behaviors
are revealed using a priori calibrations in the flow tank based on a
probability density function plot of the tail and opercular acceleration
(Fig. 4C).

Mesocosms could be populated with native forage and habitat to
look at preferred swimming speeds and daily time budgets of
behaviors across longer time scales, from weeks to months. This
could reveal the effect of physiological states on locomotion during
across seasons (spawning, migration, etc.), as has been demonstrated
for the upregulation of hormones on communication in midshipman
fish (Forlano et al., 2015; Sisneros et al., 2004). Looking forward,
more studies of tagged, lab-calibrated fish released into mesocosms
or the wild promise to reveal new insights into locomotion.

Spying on wild fish with telemetry

There is no substitute for studying animals in the wild, where their
bodies and brains have evolved. The advent of biologgers, which
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can record temperature, depth, acceleration, heart rate and light
levels among other parameters for extended periods, has provided a
rare window into how aquatic animals move in the wild (Block,
2005; Campbell et al., 2008; Hvas et al., 2020; Whitford and
Klimley, 2019; Williams and Ponganis, 2021; Williams et al.,
2020). In addition, advancing technologies promise to expand the
types and quality of data collected in the field (Brodie et al., 2018;
Hussey et al., 2015; Whitford and Klimley, 2019).

Acoustic telemetry is a popular approach to understanding
underwater animal movement, as satellite technology used in
terrestrial tracking is ineffective. Briefly, acoustic telemetry
involves attaching a uniquely coded tag to the fish and releasing it
back into its habitat, where receivers are placed to listen to its presence
(Fig. 4D). Tags reveal the location and time of arrival of specific fish
near receivers, with a transmission range of several hundred meters
depending on water depth, turbidity and current. The advent of a
global partnership that shares networks of receivers (e.g. Ocean
Tracking Network) has revolutionized the ability to track individual
aquatic animals across long distances at an economical price point
(Tverson et al., 2019). This infrastructure has provided new insights
into the migration patterns of fishes and thus serves as a powerful
conservation tool, separating stocks for better management and
revealing important spawning grounds that can be protected (Gunn
and Block, 2001; Matley et al., 2022).

What can telemetry tell a biomechanist? Acoustic tags equipped
with temperature and pressure sensors can reveal where and when
fish move across oceans, but lack the spatial and temporal resolution
sought by biomechanists to understand the proximate mechanisms
of behavior. One work-around is to place receivers that have
detection spans that cover confined bodies of water such as a river.
For example, by placing receivers in the Intracoastal Waterway, a
narrow marine river along the Atlantic Ocean, the movements of
individual fish can be tracked with high fidelity, enabling average
ground speeds to be calculated (Fig. 4E). In addition, fish swimming
speeds relative to tidal flow cycle and specific habitats (i.e. oyster
reef) can be identified (E. Goturk, C. Morgan and J.C.L.,,
unpublished). Given that tidal transport has been shown to save
energy for migrating fishes (Gibson, 1992; Weihs, 1978), receivers
can be coordinated with flow velocity monitoring stations to gain a
better understanding of what flow conditions fish must contend with
in nature. By doing so, we begin to establish a species-specific
context for the prevalence of certain swimming speeds. How fast do
fish choose to swim when left to their own devices? By studying
volitional behaviors in wild places, we meet the fish where it is,
rather than design laboratory experiments a priori. Understanding
the prevalence and importance of swimming speed may help us
better interpret the role that specific anatomical or physiological
attributes, such as fin shape or red muscle distribution, play in
enhancing or constraining locomotion.

New technologies have increased interest in understanding how
fish move in the wild, as evidenced by the over 6-fold increase in
aquatic telemetry from 2005 to 2015 (Hussey et al., 2015; Thorstad
et al., 2014), and continued advances promise to enable more
mechanistic studies in the field. Already this has resulted in an
increase in experimental versus observational studies in the wild,
where comparisons can be made between treatment groups (Cooke
et al., 2008).

Last but not least, a biomechanist dabbling in telemetry may
discover new interests in conservation, while an ecologist recording
field behaviors may realize an interest in biomechanics. This is a
much-needed perspective for both fields. This shift in outlook is not
trivial: an ecological perspective sees habitats as drivers of

locomotion, behavior and migration strategy, not just variables
that affect movement mechanics (Brownscombe et al., 2022; Huey,
1991). A mechanistic approach to conservation becomes more
likely if we drive our perspective back and forth between the lab and
the field, as well as between disciplines.

Neuroscience meets ecology

It is hard to gain a comprehensive understanding of the ecology and
energetics of locomotion without considering the brain. Animals
take in sensory input and make movement decisions based on this
information, and neuroscientists are revealing new insights by
asking questions in natural environments (Berman et al., 2019;
Cisek and Green, 2024; Dennis et al., 2021). For example, freely
flying bats in a naturalistic mesocosm were instrumental in
discovering a new population of neurons in the hippocampus that
is part of a cognitive map that encompasses hundreds of kilometers
(Geva-Sagiv et al., 2015; Tsoar et al., 2011). Underwater, advances
have also been made, with wireless recordings revealing the activity
of place cells and sensory cells for navigation and feeding in fishes
(Takahashi et al., 2021; Vinepinsky et al., 2017). A recent advance
in the fabrication of a slim, low-cost head-stage amplifier
has enabled brain activity recording in fast-swimming fishes
(Fig. 4F—H) (Gibbs et al., 2024). With modification, the amplifier
can be incorporated into a next-generation biologger to record
neural activity in wild fishes to reveal how sensory inputs and
physiological states influence, for example, habitat choice or the
seasonal pursuit of prey patterns of behavior.

Beyond recording the electrical activity of neurons, the head-stage
amplifier could additionally be used to perform an electrochemical
technique called fast-scan cyclic voltammetry, in which voltage
sweeps can be employed to identify neurotransmitters such as
dopamine or serotonin in the brain (Rodeberg et al., 2017).
Neurotransmitter levels play deciding roles in locomotion and
behavior through the alteration of physiological states (Brown and
Bolivar, 2018; Guh et al., 2021; Reid et al., 1998). Examining brain
states in freely swimming fishes capable of making real-time decisions
will give us greater insight into descending control and modulation.
This knowledge will play an important role in contextualizing and
better understanding the ecology and energetics of fish locomotion in
the years to come.

Concluding thoughts
The field of fish biomechanics is spreading its fins. More attention is
being paid to understanding the mechanisms and costs of complex
and unsteady behaviors that have ecological relevance (Fig. 5).
Laboratory experiments using more naturalistic conditions are
deepening our knowledge of the energetics of locomotion. Soft
robotic models can be used to explore the effects of swimming
kinematics on acceleration in ways that would be challenging in live
fish because of the transient and unpredictable nature of the behavior.
As we continue experiments indoors, we must also learn to recognize
when animals are ‘out of tune’. A guitar that is out of tune will still
make a sound if strummed. Similarly, an animal will respond to any
stimulus in the lab. In an era where the environment itself threatens to
be out of tune, we must be stewards of natural movement and
behavior, always mindful that our experimental reductionism occurs
within a larger ecological perspective. Asking lab questions in a field
context ensures we add complexity to experiments that generate
hypotheses with direct ecological relevance.

In addition to laboratory experiments, studying fishes in larger
spaces reveals a greater diversity of behaviors and performance. A
more holistic understanding of fish locomotion also requires
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Fig. 5. Bringing fishes into the controlled environment of the laboratory
yields powerful insights into behavior, but often at the cost of reducing
ecological perspective. Bringing technology into the wild opens up a rich
and relevant suite of natural behaviors, but often results in data with low
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incorporating an understanding of neuroscience. Looking
forward, advances in telemetry technology promise next-generation
‘lab-on-a-fish’ capabilities that will enhance collaborations between
neuroscientists, biomechanists and movement ecologists. The effect
will be to usher in a new, more nuanced and accurate understanding of
how and why animals are designed and move.

The experiments we choose shape our individual careers. But the
questions we ask and the perspectives we have while asking them
drive and define the direction of our field. We stand to enrich our
understanding of animal movement when we integrate technologies
and open our doors and eyes to what is happening outside our
immediate labs.
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