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Uncovering the mechanisms and implications of natural behavior is a goal that unites many fields of biology.
Yet, the diversity, flexibility, and multi-scale nature of these behaviors often make understanding elusive.
Here, we review studies of animal pursuit and evasion— two special classes of behavior where theory-driven
experiments and new modeling techniques are beginning to uncover the general control principles underly-
ing natural behavior. A key finding of these studies is that intricate sequences of pursuit and evasion behavior
can often be constructed through simple, repeatable rules that link sensory input to motor output: we refer to
these rules as behavioral algorithms. Identifying and mathematically characterizing these algorithms has led
to important insights, including the discovery of guidance rules that attacking predators use to intercept mo-
bile prey, and coordinated neural and biomechanical mechanisms that animals use to avoid impending col-
lisions. Here, we argue that algorithms provide a good starting point for studies of natural behavior more
generally. Rather than beginning at the neural or ecological levels of organization, we advocate starting in
the middle, where the algorithms that link sensory input to behavioral output can provide a solid foundation
from which to explore both the implementation and the ecological outcomes of behavior. We review insights
that have been gained through such an algorithmic approach to pursuit and evasion behaviors. From these,
we synthesize theoretical principles and lay out key modeling tools needed to apply an algorithmic approach
to the study of other complex natural behaviors.
Introduction
Natural behaviors often seem unapproachably complex. Even

routine behavioral sequences — for example, the maneuvers

of a dragonfly as it takes flight, pursues and captures a passing

fly, then returns to its perch [1] — involve rich streams of

incoming sensory data and intricate cascades of responses

that appear delicately tuned to the situation at hand. Among

the many challenges involved in decoding such behavior is the

difficulty of understanding how processes at different levels of

brain organization interact to transform dynamic, high-dimen-

sional sensory data into maneuvers that are both flexible and

precise. While this complexity can be daunting, some of the

most exciting and most pressing problems in biology and med-

icine demand that we better grasp the mechanisms and function

of natural behavior [2].

Natural behaviors are difficult to study, in part, because gener-

ating effective behavior in a dynamic world is inherently a multi-

scale problem [3]. An animal’s actions result from sensory stim-

ulation, neural processing, and muscle contractions. Yet, these

processes occur on timescales far shorter than those of the

most conspicuous behavioral goals: for example, capturing a

passing prey or evading an attacking predator. The problem of

understanding how animals generate effective natural behavior
Curre
thus requires that we link the neural and biomechanical mecha-

nisms that control an animal’s elementary behavioral actions to

fitness-relevant goals that are achieved over much longer time-

scales. We are unlikely to fully solve this problem by reducing

natural behaviors to more tractable behavioral tasks [4,5].

Rather, if we are to shed light on the mysteries of how extended,

flexible sequences of natural behavior are generated, and how

such behaviors operate and evolve, we need methods that can

reveal how subcomponents of behavior are integrated to form

a functional whole.

In this review, we explore insights gained through studies of

animal pursuit and evasion: two ubiquitous behaviors that are

beginning to serve as models of natural behavior [6,7]. A key

finding of these studies is that flexible, responsive sequences

of pursuit and evasion behavior appear to be constructed

through relatively simple behavioral rules that transform sensory

input to motor output. We refer to these rules as behavioral algo-

rithms [3,8]. More specifically, we define a behavioral algorithm

as a repeatable, quantitative mapping from sensory input to mo-

tor output. Examples include guidance algorithms that relate the

relativemotion of visual targets to steering during pursuit maneu-

vers [6,9–11] and obstacle avoidance [12,13], collision-detection

algorithms that translate tactile, visual, or acoustic stimuli into
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Figure 1. A hierarchical view of pursuit and
evasion behavior.
Pursuit, evasion, and other natural behaviors
involve processes that span levels of organization
and occur on many different timescales. At a
coarse level, the Outcome (for example, escape or
capture) depends on how the behavior is
executed. This execution depends on the behav-
ioral Algorithms used to construct a behavioral
sequence from incoming sensory input. Algo-
rithms are executed through neural and biome-
chanical processes at the Implementation level.
For example, one algorithm (described by the
function FðX½t�Þ) may describe how looming visual
input, X½t�, determines whether an escape ma-
neuver is initiated (for example, the acceleratory
‘C-start’ response of fish). Another algorithm
ðGðY ½t�ÞÞ may determine the initial direction of the
escape maneuver as a function of the stimulus
sequence received prior to initiation. A third
ðHðZ½t�ÞÞ may describe how incoming sensory
data drives trajectory control during movement
toward a safe shelter [38].
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escape responses [14–18], optomotor algorithms that translate

wide-field visual motion into turning behavior [19,20], and plume

tracking algorithms that translate measurements of wind direc-

tion and odor detections into flight patterns [21,22].

An intriguing characteristic of many behavioral algorithms is

that they can be described with high fidelity by simple, low-

dimensional mathematical models. Researchers have exploited

this agreement between behavioral data and tractable models

to better grasp the logic of natural behavior. By identifying

behavioral algorithms and building mathematical models to

describe them — for example, using control equations [6,23] or

stochastic processes [24] — studies have proceeded to explore

the mechanisms behind pursuit and evasion behaviors, using

algorithmic models to find clues about which elements of the

nervous system might implement a given behavior

[11,15,18,25]. Another branch of research is using algorithms

to move in the opposite direction — toward the ecological and

evolutionary implications of natural behavior— using algorithmic

models to guide ecological analyses and computational

modeling [23,26–29].

In the following sections, we review insights that have come

from applying this algorithmic approach to the study of pursuit

and evasion behavior. We synthesize theoretical principles,

experimental findings, andmodeling tools that have been central

to the success of this approach. Finally, we discuss emerging

methods that could help researchers apply algorithmic models

both more systematically and more broadly to probe the mech-

anisms and implications of natural behavior.

Pursuit and Evasion as Models of Natural Behavior
Whether feeding, fighting, fleeing, or mating, animals have

been chasing one another since at least the Cambrian. Pursuit

and evasion behaviors are often extraordinarily conspicuous

and clearly goal-driven [6,7], but these behaviors also involve

some of the best understood of all neurons and neural cir-

cuits: from elementary motion detectors and optic-flow sensi-

tive interneurons [30], to Mauthner cells and squid giant axons

[31]. Importantly, the ultimate outcomes of pursuit and

evasion influence fitness in very direct ways; these behaviors

are ecologically and evolutionarily relevant, and at the same
R664 Current Biology 30, R663–R675, June 8, 2020
time well-defined and tractable enough to study with the

high degree of precision offered by modern neuroscience

and biomechanics. All these attributes make the pursuit–

evasion problem a strong model through which to study nat-

ural behavior.

Like many natural behaviors, pursuit and evasion involve pro-

cesses that occur at different levels of organization, on different

timescales, and at different degrees of removal from ultimate

fitness consequences. To organize these scales, a hierarchical

view of these behaviors is particularly useful (Figure 1) [5,8,32].

The coarsest level of the hierarchy, the Outcome, describes

whether a particular pursuit or evasion behavior is successful

or not. Ecologists have long studied interactions between pred-

ators and prey by focusing on this level alone. One could ask, for

example, how the speed of flowing water influences the ability of

a fish to capture prey suspended in thewater column [33], or how

mortality of songbirds from attacking predators depends on the

level of acoustic noise in urban environments [34]. Studying

behavior at this level alone, however, limits one to a descriptive

understanding of behavioral outcomes. Patterns can be

described but rarely predicted in any precise way. To move

beyond this, the Outcome must be connected to the manner in

which the behavior is executed (Figure 1). The behavior is

composed of a collection of behavioral Algorithms as well as

the rules that govern transitions between these algorithms. Algo-

rithms are executed through a physical Implementation involving

the animal’s sensory organs, musculoskeletal system, and ner-

vous system (Figure 1).

While the definition of an algorithm used here is more

restricted than that used in past work (for example [8,35,36]),

the hierarchical view of natural behavior shown in Figure 1 has

much in common with schema developed in the past to help

organize questions about behavior, most notably Marr’s levels

of analysis [8], Tinbergen’s four questions [32], and recent elab-

orations of these frameworks [5,36]. The essential point of such

hierarchical schemes is to emphasize that behavior seldom in-

volves processes occurring on a single timescale or at a single

level of organization. Rather, natural behavior almost always in-

volves coordination between actions and goals that span a range

of scales.
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The Importance of Algorithms
In the hierarchy shown in Figure 1, Algorithms occupy a special

position: they are poised between the neural and biomechanical

implementation and the ecological outcome of behavior. Algo-

rithms thus provide the connection between success or failure

of a particular behavior, and the physical attributes of the ani-

mal — the structure of sensory receptors, the geometry of limbs

and fins, the organization of circuits in the brain — that evolve

through natural selection. From the perspective of a researcher,

algorithms are also useful because they connect actions and

goals that occur on different timescales. For example, the

guidance algorithms that predators employ during pursuit
Box 1. Identifying and modeling behavioral algorithms.

The process of identifying, comparing, and testing candidate algo

Step (1): identify the problem. Identify a fitness-relevant objectiv

evasion behaviors, objectives are often clear, which is one benefi

behavior, determining the objective may start with a review of the e

how the behavior is used in nature. Once an objective is identified,

conditions for success or failure. For example, in the case of a pre

conditions are the bird’s position and velocity as well as the initial

capture its prey before the prey escapes to a refuge.

Step (2): identify the constraints. In complex behavioral tasks,

[39]. Which of the many possible solutions ends up being imple

arewhat the animal canmeasure—constraints on the ‘inputs’ that

to measurements — constraints on motor capabilities or behav

things like the accuracy with which measurements can be made

when integrating signals from each modality [23, 94]. On the outpu

acceleration an animal can achieve, or the biomechanical delays as

[104]. For example, during high-speed attacks by diving falcons [2

roll acceleration are key constraints.

Step (3): identify candidate algorithms and build mathematica

date algorithms that satisfy the objective and obey the constraints

rithms just by writing down the key parameters of the problem as

target. In other cases, the connection between the ultimate objecti

measurements of the behavior may be the best way to proceed (fo

mapping) should then be described using amathematical relations

form of a differential, difference, or state equation, or a stochastic

neuvers is consistent with a proportional navigation guidance alg

animal’s velocity vector, g, to changes in perceived line-of-sight

Nðdl =dtÞ. The navigation constant,N, determines how strongly th

in the line-of-sight angle.

Step (4): compare and test algorithms. Before using the algor

determine whether the input-to-output mapping embodied in a p

In many cases, more than one algorithm could potentially solve the

test predictions of candidate algorithms. Returning to the example

chase its prey through clutter. The pursuer has at least two goals:

colliding with the surrounding clutter. Studies of vision-guided obs

use to avoid obstacles. The first, found in honeybees [105] and pa

and right sides of the body. The second, found in hummingbirds [1

experiment to distinguish the two algorithmswould be to fly trained

tracking how the animalmoves in response [13].Mathematical mod

titative predictions, and the predictions can be compared to data.

predict the animal’s behavior. In such cases, algorithm developme

where the researcher hypothesizes algorithms, tests them with ex

sized algorithms, and so on [6,28].
maneuvers involve turning to stabilize the visual location or

line-of-sight angle of a moving target [6,9–11], but this near-

term goal of stabilizing apparent target motion ultimately allows

the animal to achieve a longer-term goal that is more directly

related to fitness: intercepting the target. By building mathemat-

ical models of algorithms and analyzing them, the relationship

between these goals often becomes clear [12,37,38].

In Box 1, we describe a general approach for identifying,

modeling, and comparing candidate algorithms. This algorithmic

approach to behavior is based on a hypothesis, which states,

first, that there exist low-dimensional features of sensory inputs

that produce consistent, repeatable motor outputs, and second,
rithms can be broken down into a sequence of four steps.

e the animal is attempting to satisfy. In the case of pursuit and

t of using these behaviors as models. For other types of natural

cology of the animal, or new studies that characterize when and

one can lay out the initial conditions of the problem aswell as the

datory hawk or falcon pursuing prey (Box figure) [6,28] the initial

position and velocity of its prey. To succeed, the predator must

a given objective can often be achieved in many different ways

mented often depends on constraints. Two crucial constraints

inform a behavioral decision—and how the animal can respond

ioral ‘outputs’. Relevant constraints on sensory inputs include

by each sensory modality, and processing delays that occur

t side, constraints may include things like the maximum angular

sociatedwith responding to different kinds ofmotor commands

6], limits on visual precision, response delay, wing loading, and

l models to describe them. The next step is to identify candi-

. In some cases, it may be possible to deduce candidate algo-

Yuan [43] did when deriving strategies for intercepting a moving

ve and near-term goals may be less clear. In such cases, careful

r example [11–13]). The candidate algorithm (the input-to-output

hip between sensory input andmotor output, for example in the

process. The steering of hawks and falcons during pursuit ma-

orithm (Box figure) [6,28]) that links changes in the angle of the

angle to a target, l, according to the relationship: ðdg =dtÞ =
e animal changes its direction of motion in response to a change

ithm to explore implementation or outcomes, it is important to

articular algorithm is sufficient to accurately describe behavior.

problem. Step 4 therefore involves designing experiments that

of a predatory bird pursuing fleeing prey suppose the bird must

capture the prey and avoid injury. The second goal requires not

tacle avoidance have identified two primary algorithms animals

rakeets [106], is to balance the velocity of optic flow on the left

3], is to balance the rate of image expansion on the two sides. An

hawks through a passagewith static andmoving patternswhile

els of the two competing algorithms can be used tomake quan-

Often, none of the originally proposed algorithms will adequately

nt (step 3) and algorithm testing (step 4) really represent a cycle,

periments, quantifies discrepancies that lead to new hypothe-

(Continued on next page)
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Behavioral algorithms guide interactions among organisms. Left panel: a hawk measuring the line-of-sight angle to a mouse, and turning to counteract
changes in that angle using a proportional navigation guidance algorithm [28]. Right panel: an approaching snake from the perspective of themouse. The visual
angle— the angular region of the mouse’s visual field taken up by the snake— and its expansion rate encode information about the predator’s approach [14],
and the probability that the mouse will initiate a high-speed escape maneuver depends on this angle, its expansion rate, and other parameters of the visual
scene [107].
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that these input-to-output mappings can be well approximated

by simple mathematical relationships. Why such low-dimen-

sional mappings should exist when the apparent degrees of

freedom of biological systems are so numerous is a deep ques-

tion [39,40], and one that we expect will attract considerable

attention in the coming years. At present, however, the algo-

rithmic hypothesis is largely motivated by empirical findings:

although patterns of behavioral output can be intricate and highly

dynamic [41,42], these patterns can often be predicted with sur-

prising accuracy by simple mathematical models [12,37,38]. For

example (Box 1), during pursuit maneuvers, hawks and falcons

follow trajectories that are often tortuous and seemingly idiosyn-

cratic, but the relationships between incoming visual input and

turning behavior can be explained by variants of a simple guid-

ance algorithm known as proportional navigation [6,26,28].

In the cases where algorithms have been used most effec-

tively, the key to identifying the algorithm has been to determine

which low-dimensional outputs are essential, and which inputs

are predictive of those outputs (Box 1). Perhaps surprisingly,

successful efforts to identify the relevant inputs, outputs, and

the mapping between them have often been guided, at least

initially, by theory (for example [14,43]) rather than by data.

Algorithm to Implementation
Identifying andmodeling behavioral algorithms can be extremely

useful when studying how the nervous system generates

behavior. Knowledge of algorithms can drastically narrow the

range of possible measurements the animal could be using to

guide its actions. This knowledge can also provide clues about

how sensory measurements are stored, compressed, and trans-

duced. An instructive case comes from the study of how animals
R666 Current Biology 30, R663–R675, June 8, 2020
detect and respond to impending collisions. The ability to antic-

ipate a collision is, of course, crucial both for predators and prey

[24,44]. The groundwork for the modern understanding of how

animals detect impending collisions was largely laid by two psy-

chologists, Gibson [45] and Lee [14], in work that was primarily

theoretical in nature. This work emphasized that apparent

expansion or ‘looming’ of a visual object could indicate when

the object was on a collision course with the viewer, and in

some cases, even encode the time to collision [14]. Predictions

of this early theory were borne out in psychophysical experi-

ments in which subjects were presented with expanding visual

objects ([44] and references therein).

Motivated by these results, researchers began to search for

neurons in the visual system that respond selectively to loom-

ing stimuli, and found them in the descending contralateral

movement detector (DCMD) and lobula giant movement de-

tector (LGMD) of locusts [15,46], and in specialized neurons

within the nucleus rotundus of pigeons [16]. Research into

the mechanistic underpinnings of collision detection continues

to bear fruit. For example, the circuit-level mechanisms that

allow animals to measure looming visual objects are now

becoming clearer, at least in genetically tractable model or-

ganisms [24,47]. At the same time, we are learning more about

how animals produce flexible responses to looming objects

with different properties [18,24,48] and in different natural

contexts [38].

The lesson from studies of collision detection is that a few key

visual features of an approaching object— the object’s apparent

size and expansion rate — are sufficient to indicate an imminent

collision, and to convey information about the time course of that

collision [14]. Neurons in the visual system measure and encode
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these variables [15,49]. Moreover, the mapping from visual input

to behavioral response— in the form of initiation of rapid escape

maneuvers — is low-dimensional, and the form of this mapping

appears to be shared across distantly related species [37]. A

mechanistic understanding of collision detection has also led

to new questions about how animals control other elements of

evasion behavior, including action selection early in an escape

maneuver [18,48], and trajectory control during egress [38].

Thus, insights derived from collision avoidance algorithms

have continued to open doors to the understanding of how ani-

mals generate complex behaviors to avoid being captured.

Although these algorithms appear simple, escape behaviors

are not rigid. Recent analyses have shown how gain control,

multimodal sensory integration, and internal state dependencies

— for example, dependence on hunger state [50] — modulate

the basic rules of escape behavior [7]. These studies are partic-

ularly exciting because they have the potential to uncover the

neural mechanisms behind patterns of behavior such as hun-

ger-dependent risk-taking [51] that have long been observed in

wild animals.

When generating pursuit and evasion maneuvers, animals

must respond to incoming sensory cues in ways that are very

rapid but also very precise [26]. Achieving speed and precision

is difficult, in part, because there is a vast stream of sensory

data entering the brain, only some of which is relevant to a given

behavioral task. Moreover, different tasks may require using the

same sensory data in different ways, creating conflicts that must

be resolved quickly. As an example of this, many visual animals

exhibit a behavioral reaction known as an optomotor response,

during which the animal responds to perceived whole field visual

motion on the retina by turning in away that counteracts that mo-

tion [52]. This response stabilizes the animal’s orientation relative

to external landmarks.

After the discovery of this algorithm, researchers realized

that the optomotor response could be problematic for maneu-

vering animals because it would counteract volitional turns.

This problem could be solved if an ‘efference copy’ of the mo-

tor command related to turning were sent to the visual system

to suppress the optomotor response during volitional turns

[19,20]. A compelling example of such efference copy modu-

lation was found in flies, which make rapid changes in walking

or flying trajectory to evade threat stimuli [53]. These changes

in trajectory involve a change in both body yaw and roll. In the

roll direction, the optomotor response is beneficial because it

allows the fly to keep its head aligned with the horizontal

plane. In the yaw direction, however, an optomotor correction

would cause a fly to turn back in the direction from which it

began the turn. Turning flies appear to maintain optomotor re-

sponses to roll but suppress them to yaw. These behavioral

observations led to the discovery of neural mechanisms that

differentially suppress the optomotor response along different

body axes: Kim et al. [54] experimentally demonstrated sup-

pression of optic flow signals in fly lobula plate tangential cells

that encode optic flow in the yaw direction. This work illus-

trates how identifying a behavioral algorithm and evaluating

its consequences in different contexts can help reveal how

the brain resolves conflicts to produce flexible responses

that are suited to the challenges animals face when producing

natural behavior.
Algorithm to Outcome
Behavioral algorithms have been central in theory-guided inves-

tigations of the neural and biomechanical mechanisms behind

pursuit and evasionmaneuvers, but they have also helped reveal

how long sequences of pursuit and evasion behavior are con-

structed, and how the outcome of such behaviors depend on

features of the environment. One area where algorithmic models

have been particularly important is in the study of how predators

guide motion when chasing prey. As in the case of collision

avoidance behavior, theoretical studies were behind many early

insights about the relevant sensory features for pursuit behav-

iors. Theoretical treatment of pursuit algorithms was motivated

by military applications, where the United States’ Navy sought

to develop self-guided missiles to intercept fighter planes [55].

One of the earliest algorithms proposed to guide such missiles

was referred to as a ‘pure pursuit’ strategy because, at each

point in time, the purser attempts to move toward the current

location of the target by guiding its steering to null the difference

between its velocity vector and the vector pointing to its target.

This algorithm was simple to implement, but mathematical anal-

ysis revealed that, to intercept targets, it would often require

angular accelerations that far exceeded performance capabil-

ities of existing missiles [43,55].

This problem could be overcome, however, if rather than

steering toward the current location of the target, the pursuer

instead attempted to intercept the target at a predicted location

some time in the future. While such a strategy would appear to

require forecasting the future location of a target, Yuan [43]

and others showed that this strategy could be effectively imple-

mented using a simple reactive feedback control rule now

referred to as ‘proportional navigation’, where the pursuer turns

at a rate proportional to the rate of change in the line-of-sight

angle to the target (Box 1). The strength of this algorithm is

that by reacting to a readily measurable feature of relative target

motion, the algorithm effectively predicts the future location of

the target and executes a least-distance trajectory to intercept

it, so long as the target velocity remains stable and target

maneuvering is minimal.

Proportional navigation, pure pursuit, and related interception

algorithms have provided starting points for identifying the sen-

sory-motor transformations animals use to intercept their prey.

For example, a surge of recent studies show that many predator

species use proportional navigation, deviated pursuit, or similar

reactive guidance laws for prey interception (for example

[6,23,28,56,57]). Other studies use these algorithms as null

models from which to build more complex descriptions of guid-

ance behavior [11,58]. Studies of pursuit illustrate the impor-

tance of using models of candidate algorithms as quantitative

hypotheses of how organisms transform sensory inputs into

behavior. Without considering the theory behind pursuit algo-

rithms [55], it is not at all clear why predators as diverse as flies

[58], falcons [6] and beetles [56] should employ similar strategies

when chasing down their prey. In the absence of algorithmic

models and the theoretical principles derived from them, our un-

derstanding of animal interception behavior would look very

different.

Interception algorithms have also been used to understand

variation in behavior and to anticipate how behavioral outcome

will vary with features of the environment. For example, when
Current Biology 30, R663–R675, June 8, 2020 R667
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targeting small perches, Egyptian fruit bats steer in a way that is

consistent with a proportional-derivative guidance rule: the bat

turns at a rate that is governed by both the deviation angle —

the angle between the bat’s velocity vector and its line-of-sight

to target — and the rate of change in that angle [23]. Two key pa-

rameters govern the animal’s ability to steer to target using this

algorithm: the precision of measurements of the line-of-sight

angle, and the delay associated with making and reacting to

these measurements.

The bat visual system and biosonar system operate with

different levels of precision and are associated with different de-

lays; vision is more precise than biosonar, and the delays asso-

ciatedwith visual responses are shorter. This leads to the predic-

tion that the bat can apply higher steering forces when flying in

the light, where vision can be used to measure angles, than

when flying in the dark, where the animal must rely on sonar

alone. These predictions were confirmed [23], revealing that

the flight paths these animals use to approach targets may be

fundamentally constrained by noise and delays in their sensory

systems. The key point is that knowledge of the algorithm — in

this case inferred through a combination of existing control theo-

retic results and patterns in data — can lead to precise, testable

predictions about how performance should change in different

sensory landscapes.

Interactions between Pursuers and Evaders: Games
between Algorithms
Among themost challenging aspects of pursuit and evasion, and

of many other natural behaviors, is the fact these behaviors are

employed during interactions with other organisms; in nature,

pursuers and evaders interact with one another in a feedback

loop, with pursuer and evader each adjusting its behavior to ac-

count for the actions of its adversary. In the past, most studies of

pursuit and evasion have avoided the difficulties of pursuer–

evader feedbacks by ignoring or experimentally eliminating

responsive control of either the pursuer or evader. For instance,

studies of evasion behavior often assume pursuers use simple,

open-loop attack maneuvers [59], whereas the studies of these

same attack maneuvers show that predators often use some

form of feedback control to pursue prey [6,56,57]. Likewise,

much of the theory used to study interception strategies are

based on ‘non-maneuvering’ targets [55] rather than being

based on targets that are, themselves, actively seeking to evade

their pursuer.

Reconciling these inconsistencies, either through theory or ex-

periments, requires that wemore carefully consider how animals

interact with one another. Again, building models of algorithms

that guide pursuit and evasion maneuvers could help lead to a

solution. Armed with candidate algorithms (Box 1), game theory

[60] could offer a particularly potent tool for studying the dynamic

interactions among organisms that react to one another. The

goal of game theoretic analyses as they have been applied to

pursuit and evasion behavior is typically to identify the best

possible algorithm or set of algorithms both the pursuer and

evader could use to combat one another [61,62], or to determine

the performance properties of a given algorithm when it plays

against a broad class of opposing algorithms [63]. Game theory

adds an element that is missing frommore traditional analyses: it

explicitly considers the fact that the value of a particular behavior
R668 Current Biology 30, R663–R675, June 8, 2020
depends on the behaviors it is playing against. Concepts like

‘evolutionary arms races’ [64] and ‘optimal’ ecological strategies

[61] hinge on this feedback between behaviors of interacting an-

imals, which is why game theory has much potential to add rigor

to these oft-cited biological concepts.

Game theoretic analyses of guidance algorithms help illustrate

the kind of insights to be gained by applying game theory to

study pursuit and evasion more broadly. Using the theory of dif-

ferential games, Ho et al. [63] showed that proportional naviga-

tion is an optimal strategy for intercepting moving targets,

assuming a set of conditions on pursuer and target motion are

met. The performance of this algorithm as well as the simplicity

of the computations it involves may help explain why it appears

to have evolved across diverse animal lineages with vastly

different brains [28,65].

But the optimality of proportional navigation requires strong

assumptions. Among these are the requirements that the tar-

get’s velocity is stable and maneuvering is minimal, and that

there are no appreciable time delays between sensory input

and responses of the pursuer. When a pursuer steers using pro-

portional navigation with delays, steering can become unstable

and the pursuer can lose control completely [66]. Animals appear

to execute proportional navigation despite having sensory-mo-

tor delays of tens or even hundreds of milliseconds, raising the

question of how they can implement this algorithmwithout losing

control. The risk of losing control is greatest if the pursuer at-

tempts to apply large correcting forces in response to perceived

changes in line-of-sight angle [66,67], which may help explain

both why animals tend to use turning gains lower than the theo-

retically-predicted optimal gains in delay-free systems [6,28],

and why animals appear to adjust the steering forces they apply

as a function of the delay associated with the sensory modality

they are using (for example, biosonar versus vision [23]).

Future game theoretic analyses could address the question of

how prey maneuvering [68] affects the success of proportional

navigation and other pursuit algorithms. Certain types of target

maneuver can destroy the optimality of proportional navigation

and reduce the probability that the pursuer will intercept the

target at all [69]. This raises questions about whether prey might

evolve evasion behaviors that are particularly good at combating

proportional navigation. A combination of differential games and

stochastic control could be used to understand how evader

behavior can disrupt pursuit algorithms (for example [70]), and

to more rigorously address longstanding questions about

whether producing random or ‘protean’ maneuvers when fleeing

from predators [59,68] can be optimal.

Another emerging method for studying interactions between

pursuers and evaders uses computational models of pursuit

and evasion behavior built around data from pursuer–evader in-

teractions in the field [26]. For example, Cade et al. [71] com-

bined empirically measured attack maneuvers of humpback

whales with experimental studies of the escape algorithms of

their anchovy prey to understand howwhales are able to capture

thousands of anchovies in a single lunge [72], despite their

limited maneuverability. By fitting an algorithmic model to an-

chovy escape responses, the authors of this study found that

fish escape maneuvers are triggered by the strong visual stim-

ulus produced when an approaching humpback opens its mouth

to begin engulfment, revealing why humpbacks delay mouth
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opening when attacking anchovy schools, but not when attack-

ing slower, less responsive prey.

Wilson et al. [64] applied a similar approach motivated by the

classic ‘turning gambit’ theory of Howland [73] to understand the

biomechanics and behavior of interactions between lions and

zebras, and cheetahs and impalas. They used a computational

model of the terminal phase of predator–prey chases to reveal
Box 2. Coarse-graining and refinement of behavioral algorithms.

Model coarse-graining and refinement are used to understand how

another scale [80,108]. Both procedures begin with a mathema

example, amathematical model of the behavioral algorithm that pr

maneuver as a function of the sequence of visual stimuli it has expe

involve expressing model parameters as functions of a finer-scale

model of the activity of neurons involved in the Mauthner cell circ

model could involve averaging over possible sequences of senso

expected long-run performance (Box figure).

Refinement. In a recent biological example of refinement, Bahl a

discriminate the direction of whole-field visual motion from a field

behavioral algorithm describing how sensory input drives an anim

model of the form:

t
dDðtÞ
dt

= cðtÞ �

where DðtÞ is a latent decision variable (the animal makes a decis

negative threshold, respectively), cðtÞ is the coherence of the vis

of the direction of dot motion), t is the timescale of sensory integra

viation, s. This algorithmic model states that the animal integrates

cess, with memory timescale t, and uses this information to decide

thememory timescale is on the order of seconds, far longer than th

To explain this long timescale, the authors used measurements fr

network model of activity within populations of neurons that enc

sponding evidence thresholds. This fine-scale model reproduced

the algorithmic leaky integrator model, suggesting that the memo

vidual neurons. A final step in refining this model would be tomathe

from the network model of neural activity so that quantitative prop

properties of interlinked neural populations.

Coarse-graining.Coarse-graining is used tomove frommore deta

over some of the state variables [80,108]. Applying this method to

rithms and successively averaging over details to retain only a few

Particularly instructive examples of coarse-graining are given by F

lam et al. [81] in the context of neural ensembles. Importantly, by a

scales, one sacrifices detailed predictions that can bemadewith a

outcome and implications of behavior over longer timescales. In a

foraging behavior of coral reef fish feeding in dangerous habitats

based on visual cues about predatory threats and on visual cue

Although escape decisions depend on detailed sequences of sen

nutes to hours can be captured by a stochastic process model t

sensory stimuli. This coarse-grainedmodel of behavior accurately

decisions animals make over the course of a day [27]. Importantly

processes, eachmodel can be used tomake predictions about the

fine scales allows for interesting scientific exercises that are impo

would happen to long-run performance if behavior were perform

unchanged, whereas in others, seemingly small changes in beha

sensory stimuli produced by their neighbors — can have tremend

have much to teach us about why behaviors operate as they do [
how both predator and prey could maximize success (capturing

and avoiding capture, respectively), and to show that predators

must come close to their absolute performance limits to reliably

capture prey.

As we continue to advance our understanding of natural

behavior, it will be crucial to consider the fact that many of the

behaviors an animal executes are really responses to other
processes at one scale emerge from, or influence processes at,

tical model of a phenomenon of interest at a single scale, for

edicts whether an animal will exhibit a high-performance escape

rienced (Box figure) [18,24,48]). Refinement of this model might

process: for example, a more detailed model of the retina, or a

uit and related circuits [48]. Coarse-graining of the algorithmic

ry stimuli or conditions an animal might experience to calculate

nd Engert [78] developed a model to study how larval zebra fish

of projected dots that move with high or low coherence. The

al’s turning behavior was well-described by a leaky integrator

DðtÞ+Nð0;sÞ;

ion to turn left or right when this variable crosses a positive or

ual motion presented to the animal (a measure of the salience

tion, and N is Gaussian noise with zero mean and standard de-

past visual stimuli it has seen through a noisy integration pro-

when to turn. Fitting this model to behavioral data revealed that

emillisecond timescale most relevant to individual neurons [78].

om neural populations in the zebra fish hindbrain to motivate a

ode evidence for left versus right visual motion, and the corre-

neural firing patterns, and was consistent with predictions of

ry timescale is a property of neural populations rather than indi-

matically derive the form and structure of the algorithmic model

erties at the algorithmic level could be predicted in terms of the

iled to less detailed descriptions of a systemby taking averages

behavior could involve starting with models of behavioral algo-

statistics of the typical dynamics (Box figure; for example [109]).

lierl et al. [110] in the context of collective behavior, and Meshu-

veraging over dynamics that occur at short temporal and spatial

fine-grainedmodel in exchange for a tractable description of the

recent example of this, Gil and Hein [27] studied the escape and

in a coral reef. Fish make decisions to cease feeding and to flee

s produced by the actions and locations of neighboring fish.

sory stimuli [38] (Figure 1), the average behavior of fish over mi-

hat incorporates the way fish respond to a typical sequence of

predicted the long-run outcome of themany escape and feeding

, because fine- and coarse-grained models describe the same

other [110]. This mathematical connection between coarse and

ssible without it. For example, one can ask the question: ‘‘what

ed differently?’’ In some cases, average performance might be

vior — for example, changes in the way individual fish react to

ous effects on performance [27]. Such counterfactual analyses

32].

(Continued on next page)

Current Biology 30, R663–R675, June 8, 2020 R669



Box 2. Continued

C
o

ar
se

 g
ra

in
in

g
R

ef
in

em
en

t

0

Firing
rate

Time to 
collision

Average 
performance

Outcome

Algorithm

Implementation
Fine 

resolution

Intermediate
resolution

Coarse
resolution P = [F(X), G(Y), H(Z)]

Motor 
response

Neural 
representation

Retinal input
f1(X [t] )

f2(f1 [t])
(X )

f3(f2 [t ])

F

Current Biology

Studies can refine understanding of behavior by investigating how the algorithm, FðXÞ, is implemented by the sensory system, brain, and musculoskeletal
system. If FðXÞ, has been experimentally verified, plausible models of implementation should reproduce predictions of FðXÞ. Tomove in the opposite direction,
the outcome of a particular set of algorithms can be rigorously studied by coarse-graining. This can be done by averaging over the range of sensory input and
conditions the animal experiences (for example, different attack directions, light versus dark) and quantifying the outcomes achieved using algorithms F, G,
and H.

ll
Review
animals that are, themselves, behaving. Game theory and

computational models are likely to become increasingly impor-

tant tools for studying the feedbacks that occur when algorithms

play against one another.

Using Algorithms to Bridge Levels of Organization
and Analysis
A major advantage of building mathematical models of behav-

ioral algorithms is that defining behavior mathematically raises

the possibility of using mathematical analysis to connect pro-

cesses that occur at different scales (Figure 1): at least in

principle, algorithmic models can be derived from mechanisms

at lower levels of organization, and used to derive models of

phenomena at higher levels of organization. Of course, linking

processes at different levels of organization is a stated goal of

almost all integrative biological sciences. But, achieving this

integration in practice can be exceedingly hard [74]. Indeed,

moving rigorously from algorithm to implementation, or from al-

gorithm to outcome (Figure 1) has been perhaps the most diffi-

cult step in past studies of pursuit and evasion. Themost intuitive

way to connect finer and coarser scales is to use construction:

take all the details one knows about a system at the finest scale,

and continue to include new details that appear when moving to

higher levels of organization [75]. The problem with this strategy

is that models become intractable almost immediately if all de-

tails are retained. If details are to be discarded, the question of

which to discardmust often be answered without knowing which

are important for producing phenomena at higher levels of orga-

nization.

Several recent studies of pursuit and evasion have followed a

different route. Researchers have bridged levels of organization

using multi-scale models that add complexity judiciously, often
R670 Current Biology 30, R663–R675, June 8, 2020
capturing details at finer scales using statistical or phenomeno-

logical models that accurately represent known patterns (for

example [23,24,26,47]). The hierarchy shown in Figure 1 helps

to explain why such a modeling strategy can work: details that

are crucial for understanding processes at one level of analysis

or organization collapse into relatively few key state variables

that matter at the next level. For example, at the implementation

level, detecting a predator and initiating a turning maneuver may

require several classes of motion detectors in the retina, a tight

connection between retinal input and control of body bending

and limb rotations, and a host of other coordinated mechanisms

[18,47,76].

Yet in moving to the algorithmic level, such details are not

necessary to understand that an animal nonlinearly integrates

the size and expansion rate of a looming object to decide

whether to flee [15,38]. Likewise, the algorithm the animal

uses to select the initial direction of egress [77] and the algo-

rithm used to convert visual input about the environment

into an evasion trajectory [38] (Figure 1) collapse to a single

number — the escape success rate — when one calculates

how a given escape behavior affects the animal’s ecological

performance. The fact that details at one level collapse into

a small set of core variables at the next is what makes it

possible to move from one level of the hierarchy to another

in a tractable way.

This philosophy of multi-scale modeling has much in common

with formal techniques of coarse-graining and refinement used in

mathematical physics (Box 2). The goal of both coarse-graining

and refinement is to identify mathematical relationships between

processes that operate at different scales. Doing this allows one

to make detailed predictions about how processes at a finer

scale (for example, the activity of populations of neurons) result
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in properties at some coarser scale of description (for example,

memory of past sensory stimulation [78]) and vice versa.

In perhaps the most famous application of such methods, Ein-

stein used coarse-graining to show how the forces on a small ob-

ject suspended in water depend on innumerable collisions with

invisible molecules of water [79]. Not only did Einstein’s mathe-

matical formulation lead to incontrovertible evidence for the

existence of atoms (a fact that was still not fully accepted at

the time), it revealed a deep connection between an object’s

friction constant and its diffusion coefficient, two widely-studied

properties of solid objects in fluids [80]. By explaining both

friction and diffusion in terms of the micro-scale properties of

molecular collisions, Einstein’s analysis showed that a broad

range of empirical phenomena emerged from the same micro-

scale process. These discoveries enabled a tremendous leap

in the theoretical physics of fluids, but also in the formal mathe-

matical analysis of multi-scale phenomena [80].

As in physics, using coarse-graining and refinement to move

from one level of description of behavior to another hinges on

having well-defined mathematical models. In Box 2, we discuss

coarse-graining and refinement and how they could provide a

formal set of tools for bridging scales in the study of natural

behavior. Similar approaches from statistical physics have

been proposed and are currently being used to understand rela-

tionships between the properties of individual neurons and activ-

ity states of large neural sub-populations [81], traveling waves,

and whole-brain states [82].

As Einstein’s analysis showed, one benefit of having models

that link processes across levels of organization is that such

models can sometimes unify phenomena that initially appear

unrelated. A biological example of this comes from studies of

the neural basis of decision-making in multi-choice tasks,

where an animal is tasked with choosing between alternative

options and the temporal dynamics and outcome of the choice

are recorded. One class of models used to analyze such

behavioral choices, known as recurrent network models [83],

describes firing patterns of populations of interconnected neu-

rons as decisions are being made. By relating the activity state

of neural populations to the outcome of a behavioral choice,

these models relate neural and behavioral levels of organization

to one another; model predictions can be tested using both

measurements of neural activity and measurements of the

timing and nature of behavioral choices. Recurrent network

models have helped to explain several widely observed pat-

terns in behavioral data, including how evidence for one choice

versus another is weighted over time [84], speed-accuracy

tradeoffs [85], and deviations from rational choice behavior

[83]. These phenomena emerge from a combination of neural

inhibition among populations of neurons and the manner in

which population activity is read out and propagated through

the decision circuit.

Multi-scale models that quantitatively link behavioral out-

comes to the activity of neural populations have not yet been

applied widely in the study of pursuit and evasion. However,

neuroethological evidence suggests that such models could be

extremely valuable. For example, Evans et al. [24] recently iden-

tified an algorithmic model that accurately described escape de-

cisions of mice. The authors also showed that distinct neural

populations in the mouse midbrain appear to encode decisions
about whether to mount an escape response, and the vigor

with which to flee. This study provided clues about how informa-

tion relevant to escape decisions is encoded at the neural level. A

future modeling step could be to develop a fully multi-scale neu-

ral-algorithmic model that derives properties of the decision-

making algorithm from dynamics of neural ensembles.

In addition to providing a strong, quantitative connection be-

tween behavioral decisions and neural dynamics, refinement

and coarse-graining may also allow us to use insights about

behavioral algorithms to gain traction on biological processes

that play out over much longer timescales. For instance, the

rate of interactions between predators and prey is a fundamental

rate parameter that governs dynamics of predator and prey

populations. But predicting this rate is notoriously difficult. By

incorporating realistic constraints gleaned from mechanistic

studies of animal search behavior, it was recently shown that

these interaction rates can be derived from behavioral models,

in a way that relates them to animal sensory capabilities and

decision-making [29,86]. Deriving ecological rates from mecha-

nistic, data-driven models of behavior represents a fundamen-

tally new way of building models of ecological populations and

communities [87]. In the future, such analyses could provide a

conduit through which findings in biomechanics and neurosci-

ence could inform ecological and evolutionary analyses.

Open Questions about Pursuit and Evasion Algorithms
The preceding sections might give the impression that many of

the algorithms involved in pursuit and evasion have already

been identified. In truth, the discovery of one algorithm for pur-

suit or evasion has often suggested the existence of others

that have yet to be discovered. For example, we are beginning

to understand the algorithms that govern the initiation of escape

responses [7,37] and the initial choice of escape direction

[77,88], but to evade a determined predator, an animal must

have some way of guiding its trajectory beyond this initial ma-

neuver. The algorithms involved in these later stages of evasion

are not well understood. One intriguing idea is that simple, yet

still undiscovered feedback control algorithms may guide

evasion trajectories. Because a fleeing animal must not only ma-

neuver out of the path of its attacker, butmust alsomove in away

that allows it to reach shelter, such an algorithm must be able to

balance multiple, potentially competing objectives.

An emerging hypothesis is that animals solve such multi-

objective control problems by dynamically weighting the priority

given to individual objectives. At one extreme, an animal may

simply turn multi-objective control to a single-objective control

by focusing only on the most immediate task [12] or that which

can be achieved with the least disruption to some longer-term

goal [89]. An alternative is to represent objectives in some form

of common currency and to choose between them using heuris-

tics [90] or time-varying weights [38]. The extent to which algo-

rithms for evasion trajectory control resemble these alternatives

and how such algorithms are implemented in the brain remain to

be discovered.

Implicit in many algorithmic models of prey pursuit and colli-

sion avoidance is the assumption that an animal can isolate sen-

sory stimuli from a particular target (for example, in the form of a

change in the line-of-sight angle to a particular target) or a partic-

ular object that may be an approaching attacker (for example, in
Current Biology 30, R663–R675, June 8, 2020 R671
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the form of object size and expansion rate [15]). Yet in many nat-

ural settings, noise, clutter, and the presence of multiple prey or

predators means that isolating stimuli from a specific source is

not trivial. A key step forward in our understanding of pursuit

and evasion algorithms will, therefore, be to understand how

processes such as sensory filtration and selective attention

might allow the animal to isolate an individual prey or predator.

Neural mechanisms for filtration and selective attention have

been identified (for example, [91,92]), but it is not known how er-

ror and noise introduced through these mechanisms affect pur-

suit and evasion behavior.

Most of the trajectory control algorithms discussed in this

review have been modeled using simple, reactive feedback

control that assumes steering behaviors are driven by contin-

uous reactions to dynamic streams of incoming stimuli. How-

ever, growing evidence suggests that forecasting and motor

planning are also critical in at least some pursuit and evasion

behaviors (for example [11,93,94]). For example, Borghuis and

Leonardo [94] found evidence that salamanders direct tongue

strikes at the future location of moving prey rather than the

prey’s current location. By using a linear extrapolation of the

prey’s motion, the salamander is able to effectively forecast

prey location, allowing it to strike fast-moving prey despite

significant sensory-motor delays. This type of simple fore-

casting may prove common during the terminal phases of

predator–prey interactions, where interactions take place at

or below the timescale of typical sensory-motor delays.

Known mechanisms for predictive coding (for example [95])

could facilitate such short-term forecasting.

A more challenging issue is determining whether feedback

control, forecasting or state-estimation, and feed-forward plan-

ning are combined during pursuit and evasion behaviors [11].

The human motor control literature has grappled with related is-

sues for many years and could provide a template for how

research in this area could progress [96,97]. For example, the

Optimal Feedback Control paradigm (OFC) [39,98], which has

been central to the theory of human motor control, may also

prove useful as a mathematical formalism for studying how ani-

mals combine planning, forecasting, and feedback control. In

the past, OFC has primarily been used to understand how hu-

mans compensate for sensory-motor noise and external pertur-

bations during simple motor control tasks, but future extensions

of this framework could be used to better understand how ani-

mals might integrate feedforward and feedback mechanisms

to achieve the more dynamic goals they face when interacting

with predators and prey.

The issues raised in this section represent just a small sample

of the open questions about pursuit and evasion algorithms.

While resolutions to these questions would help us better under-

stand pursuit and evasion specifically, they are also deeply rele-

vant to challenges faced during many other natural behaviors.

Thus, we expect that studies of pursuit and evasion algorithms

will continue to deliver lessons about the general principles

that structure natural behaviors.

Conclusions
Using pursuit and evasion as models, we have shown how an

algorithmic approach to the study of natural behavior can shed

light on how animals produce flexible, goal-driven behavior in
R672 Current Biology 30, R663–R675, June 8, 2020
nature. This approach addresses the challenge of integrating

processes that occur at different levels of organization, on

different timescales, and at different distances from ecological

and evolutionary implications (Figure 1; Box 1; Box 2). Rather

than beginning at the bottom or the top of the organizational hi-

erarchy, we advocate starting in the middle, where study of the

behavioral algorithms that link sensory input to behavioral output

can provide a solid theoretical and empirical foundation from

which to explore both the implementation and the outcome of

behavior. As should be evident from the examples discussed,

this approach has already led to important insights. But there

is an opportunity and perhaps even a pressing need to apply it

more broadly, particularly in light of the revolution in methods

for automated collection of behavioral data occurring in compu-

tational ethology [41,42,99,100].

There is understandable excitement around new tools for

automatically measuring and classifying animal behavior.

Yet, whether these methods fulfill their promise of revolution-

izing the study of behavior [99,101,102] will depend on

whether the massive data streams produced by new compu-

tational methods reveal new principles of animal behavior

[103]. It is crucial that we remember the importance of theory

in general, and algorithms in particular, when attempting to

interpret the behavioral patterns these new methods can

quantify. An algorithmic approach could provide a way to

harness these new tools and use them to develop truly inte-

grative, data-driven theories of behavior.

Gaining a full understanding of the complex, multi-scale pro-

cesses involved in natural behavior is likely to require that we

bridge levels of analysis and levels of organization [5]. If the

goal of studying pursuit, evasion, or any other complex behavior

is to understand how the brain generates sequences of goal-

directed movements, how behavioral strategies play against

one another, or how evolution feeds back on the structures

that implement neural computations related to behavior, then

we must link the implementation, algorithms, and outcome of

behavior. Achieving these goals will require an invigorated focus

on behavioral algorithms. We believe that the widespread adop-

tion of an algorithmic approach to natural behavior is poised to

change the way we study and understand animal behavior.
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